Биоэлектрические Явления

Биоэлектрические явления

Начало изучения электрических явлений, возникающих в живых тканях, относится ко 2-й половине 18 в., когда было обнаружено, что некоторые рыбы (электрический скат, электрический угорь) при охоте используют электрические разряды, оглушая и обездвиживая свою добычу. Было высказано предположение, что распространение нервного импульса представляет собой течение вдоль нерва особой «электрической жидкости». В 1791-1792 гг. итальянские ученые Л. Гальвани и А. Вольта первые дали научное объяснение явления «животного электричества». Своими, ставшими уже классическими, опытами они достоверно установили факт существования в живом теле электрических явлений. Позже биоэлектрические явления были обнаружены и в растительных тканях.

С позиций современных представлений о биоэлектрических явлениях ясно, что все процессы жизнедеятельности неразрывно связаны с различными формами биоэлектричества. В частности, биоэлектрические явления обусловливают возникновение возбуждения и его проведение по нервным волокнам, являются причиной процессов сокращения мышечных волокон скелетных, гладких и сердечных мышц, выделительной функции железистых клеток и т.д. Биоэлектрические явления лежат в основе процессов всасывания в желудочно-кишечном тракте, в основе восприятия вкуса, запаха, в основе деятельности всех анализаторов и т.п. Нет физиологического процесса в живом организме, который в той или иной форме не был бы связан с биоэлектричеством.

Но что же такое собственно биоэлектрические явления, откуда они берутся, каково их участие в процессах жизнедеятельности? Для облегчения понимания сущности биоэлектрических явлений любой живой организм можно представить в виде сложной смеси жидкостей и различных химических соединений. Многие из этих соединений (и поступающие в организм в виде пищи, и выделенные из него в процессе обмена веществ, и промежуточные вещества, образующиеся при обмене веществ) находятся в виде положительно или отрицательно заряженных частиц – ионов.

Перераспределение этих ионов и их транспорт, постоянно имеющие место в процессе жизнедеятельности, - вот причина возникновения биоэлектрических явлений. На практике все биоэлектрические явления определяют через разность электрических потенциалов между двумя точками живой ткани, которая может быть зарегистрирована специальными электрическими приборами – гальванометрами. С помощью микроэлектродов, например, можно измерить разность потенциалов между наружной и внутренней сторонами оболочки (мембраны) клетки.

Эту разность потенциалов называют потенциалом покоя, или мембранным потенциалом. Наличие его обусловлено неравномерным распределением ионов (в первую очередь ионов натрия и калия) между внутренним содержимым клетки (её цитоплазмой) и окружающей клетку средой. Величина мембранного потенциала различна: для нервной клетки она составляет 60-80 милливольт (мВ), для поперечнополосатых мышечных волокон – 80-90 мВ, для волокон сердечной мышцы – 90-95 мВ, причем для каждого типа клетки в покое величина потенциала строго определенная и отражает интенсивность обменных процессов, протекающих в этой клетке.

В возбужденной клетке регистрируется еще один вид потенциала – так называемый потенциал действия, который, в отличие от потенциала покоя, передвигается в форме волны возбуждения по поверхности клетки со скоростью до нескольких десятков метров в секунду. В каждом возбужденном участке потенциал приобретает обратный знак. Возникновение потенциала действия связано с избирательным увеличением проницаемости клеточной мембраны для ионов натрия.

Существуют и другие виды потенциалов, в частности так называемый потенциал повреждения, или демаркационный потенциал. Этот вид электрической активности регистрируется между поврежденным и интактным (неповрежденным) участками ткани. Можно предположить, что его возникновение как бы стимулирует восстановительные (регенерационные) резервы клетки (ткани).

Биоэлектрические явления (по