Phân nhánh
Khái niệm phân nhánh được sử dụng rộng rãi trong nhiều lĩnh vực kiến thức khác nhau và gắn liền với các hiện tượng cơ bản phát sinh trong quá trình chuyển đổi liên tục của các hệ động lực từ trạng thái này sang trạng thái khác.
Trong toán học, phân nhánh là sự thay đổi bản chất định tính của nghiệm đối với một hệ phương trình vi phân tùy thuộc vào các tham số của hệ. Việc chuyển đổi sang một loại giải pháp mới xảy ra khi có sự thay đổi về giá trị tham số (cái gọi là “điểm phân nhánh”). Trong trường hợp này, sự hỗn loạn phát sinh, xác định hành vi của các giải pháp hệ thống bên ngoài khu vực trong đó giá trị của tham số không thay đổi.
Hầu hết các trường hợp phân nhánh cụ thể, kèm theo sự thay đổi trong loại dung dịch, diễn ra ở ranh giới tới hạn của các vùng (ví dụ: hệ lyofineal). Tuy nhiên, cũng có những ví dụ được quan sát trong vùng, khi một sự thay đổi nhỏ trong tham số (bao gồm cả những thay đổi liên quan đến các vùng hoàn toàn khác nhau của không gian pha) dẫn đến sự thay đổi căn bản trong hoạt động của các nghiệm hệ thống (bên ngoài vùng này).
Phân loại các phân nhánh
Các phân nhánh có thể được phân loại theo loại thay đổi và tầm quan trọng của các dao động, theo kiểu hiển thị của chúng, phương pháp cấu trúc của nó, cũng như theo tham số đặc trưng cho phân nhánh (hay còn gọi là “bất biến” của phân nhánh). Phân loại cổ điển của các đường phân nhánh phân loại chúng thành ba nhóm: trong trường giá trị tham số phức, trong góc phần tư và trong không gian ba chiều (không gian). B. Heilburton phân biệt hai nhóm trong việc phân loại các nhánh: nguyên tắc và học thuật. Xây dựng một phân loại các phân nhánh cơ bản có thể